MCP Examples

Practical examples and use cases for Model Context Protocol servers

Examples
Real-world usage examples and tutorials
📁File System Operations
Read, write, and manage files using the File System MCP server

Reading Files

Use the filesystem server to read file contents and get file information.

// Example: Read a configuration file const result = await mcpClient.callTool("read_file", { path: "/path/to/config.json" }); console.log(result.content); // Output: {"api_key": "abc123", "endpoint": "https://api.example.com"}

Writing Files

Create or update files with new content using the filesystem server.

// Example: Write a log file await mcpClient.callTool("write_file", { path: "/logs/app.log", content: "Application started at " + new Date().toISOString() }); // Example: Create a new configuration await mcpClient.callTool("write_file", { path: "/config/settings.json", content: JSON.stringify({ theme: "dark", language: "en", notifications: true }, null, 2) });

Directory Operations

List directory contents and navigate the file system.

// Example: List directory contents const listing = await mcpClient.callTool("list_directory", { path: "/projects" }); console.log(listing.entries); // Output: [ // { name: "web-app", type: "directory" }, // { name: "api-server", type: "directory" }, // { name: "README.md", type: "file" } // ]
🔍Web Search Integration
Search the web and retrieve real-time information

Basic Web Search

Search for information and get relevant results from the web.

// Example: Search for current weather const weatherResults = await mcpClient.callTool("web_search", { query: "current weather in San Francisco", max_results: 5 }); console.log(weatherResults.results); // Output: Array of search results with titles, URLs, and snippets

News Search

Get the latest news and updates on specific topics.

// Example: Search for latest tech news const newsResults = await mcpClient.callTool("news_search", { query: "artificial intelligence latest developments", time_period: "24h", max_results: 10 }); // Process and display news articles newsResults.results.forEach(article => { console.log(`${article.title} - ${article.source}`); });
🗄️Database Operations
Connect to databases and perform SQL operations

Database Connection

Connect to various database types and execute queries.

// Example: Connect to PostgreSQL const connection = await mcpClient.callTool("connect_database", { type: "postgresql", host: "localhost", port: 5432, database: "myapp", username: "user", password: "password" }); // Example: Execute a query const results = await mcpClient.callTool("execute_query", { connection_id: connection.id, query: "SELECT * FROM users WHERE active = true" }); console.log(results.rows);

Data Analysis

Perform complex data analysis and generate reports.

// Example: Generate sales report const salesReport = await mcpClient.callTool("execute_query", { connection_id: connection.id, query: ` SELECT DATE(created_at) as date, COUNT(*) as orders, SUM(total_amount) as revenue FROM orders WHERE created_at >= NOW() - INTERVAL '30 days' GROUP BY DATE(created_at) ORDER BY date DESC ` }); // Process results for visualization const chartData = salesReport.rows.map(row => ({ date: row.date, orders: parseInt(row.orders), revenue: parseFloat(row.revenue) }));
💻Code Generation and Analysis
Generate, analyze, and refactor code across multiple languages

Code Generation

Generate code snippets and complete functions based on requirements.

// Example: Generate a React component const componentCode = await mcpClient.callTool("generate_code", { language: "typescript", framework: "react", description: "Create a user profile component with avatar, name, and email", requirements: [ "Use TypeScript", "Include proper prop types", "Add hover effects", "Make it responsive" ] }); // Write the generated code to a file await mcpClient.callTool("write_file", { path: "/src/components/UserProfile.tsx", content: componentCode.code });

Code Analysis

Analyze existing code for improvements and potential issues.

// Example: Analyze code quality const analysis = await mcpClient.callTool("analyze_code", { file_path: "/src/components/UserProfile.tsx", analysis_type: "quality", include_suggestions: true }); console.log("Code Quality Score:", analysis.score); console.log("Suggestions:", analysis.suggestions); // Example: Find potential bugs const bugReport = await mcpClient.callTool("analyze_code", { file_path: "/src/utils/api.ts", analysis_type: "security", include_fixes: true }); console.log("Security Issues:", bugReport.issues);
🔗Multi-Server Integration
Combine multiple MCP servers for complex workflows

Data Pipeline Example

Create a complete data pipeline using multiple MCP servers.

// Example: Complete data analysis pipeline async function analyzeUserData() { // 1. Search for user data online const searchResults = await mcpClient.callTool("web_search", { query: "user behavior analytics trends 2024" }); // 2. Save search results to file await mcpClient.callTool("write_file", { path: "/data/search_results.json", content: JSON.stringify(searchResults, null, 2) }); // 3. Query database for user metrics const userMetrics = await mcpClient.callTool("execute_query", { connection_id: dbConnection.id, query: "SELECT * FROM user_metrics WHERE date >= '2024-01-01'" }); // 4. Generate analysis report const reportCode = await mcpClient.callTool("generate_code", { language: "python", description: "Create a data visualization script for user metrics", requirements: ["Use matplotlib", "Include trend analysis", "Export to PDF"] }); // 5. Save and execute the report await mcpClient.callTool("write_file", { path: "/reports/user_analysis.py", content: reportCode.code }); console.log("Data analysis pipeline completed!"); }